حل عدد معادلات دیفرانسیل پاره ای

حل عدد معادلات دیفرانسیل پاره ای
حل عدد معادلات دیفرانسیل پاره ای
90,000 ریال 
تخفیف 15 تا 30 درصدی برای همکاران، کافی نت ها و مشتریان ویژه _____________________________  
وضعيت موجودي: موجود است
تعداد:  
افزودن به ليست مقايسه | افزودن به محصولات مورد علاقه

تعداد صفحات : 113 صفحه _ فرمت word _ دانلود مطالب بلافاصله پس از پرداخت آنلاین

سرفصل درس:
1)    طبیعت معادلات دیفرانسیل و حل آن
2)    معادلات جداشدنی
3)    معادله دیفرانسیل خطی مرتبه اول
4)    معادلات همگن
5)    معادلات همگن با ضرایب ثابت و روش ضرایب نامعین
6)    روش تغییر پارامتر
7)    معادلات مرتبه دوم
8)    تبدیل لاپلاس و کاربرد آن در حل معادلات دیفرانسیل
9)    سری فوریه و انتگرال فوریه forier series
10)    تبدیل فوریه
11)    معادلات با مشتقات جزئی
12)    حل معادلة موج و انتشار گرما با استفاده از روش تغییرمتغیرها
13)    مشتق توابع مختلط
14)    توابع هذلولی و لگاریتمی
15)    توابع مثلثاتی معکوس

ادغام دو درس دیفرانسیل وریاضی مهندسی
نحوة ارزشیابی
1-    امتحان میان ترم اول 5 نمره
2-    امتحان میان ترم دوم 5 نمره
3-    تحویل تمرینات 1 نمره
4-    امتحان پایان ترم 9 نمره
5-    نمره تشویقی 1 نمره (به ازای هر جلسه غیبت 2/0 کسر می گردد)
کتاب معادلات دیفرانسیل بویس
معادلات دیفرانسیل نیکوکار
 
معادلات دیفرانسیل:
ارتباط بین یک تابع و مشتقات آن را معادلة دیفرانسیل می نامیم و فرم کلی معادلات دیفرانسیل به صورت بالاست.
 
 
F=ma
=yمکان
 سرعت
  شتاب
معادله دیفرانسیل      f=kx
Y=Asinwt
 
 
1,3 
مرتبة معادلة دیفرانسیل: مرتبة هر معادلة دیفرانسیل مرتبة بزرگترین مشتق آن معادله دیفرانسیل است.
مثال) مرتبة معادلات دیفرانسیل زیر را مشخص کنید.
3     (1
حل معادلات دیفرانسیل مرتبة اول : فرم کلی معادلات دیفرانسیل مرتبة اول به صورت   می باشد . حل این معادلات را وقتی که =f(x,y) yَ باشد یا   باشد . بررسی می کنیم.
1- معادلات تفکیک پذیر : اگر در معادلات دیفرانسیل به فرم =f(x,y) yَ داشته باشیم   که در آن f(x) تنها تابعی از x و f(y) تنها تابعی از y باشد. حل این معادلات به صورت زیر خواهد بود.
 
 
چون هدف از حل معادلة دیفرانسیل تعیین مقدار y است باید از طرفین معادله انتگرال گیری نمائیم.
مثال) معادلات دیفرانسیل زیر را حل کنید.
(1 

معادلاتی که به فرم   هستند را می توان با تغییرمتغیر زیر تبدیل به فرم متغیرهای از هم جدا نمود. برای اینکه آن ها را حل کنیم:
 
مثال) معادلة دیفرانسیل زیر را حل کنید:
(1
         
معادلات همگن: تابع f(x,y) را همگن از درجة n می گوئیم هر گاه 
 
مثال) درجة همگنی تابع زیر را بدست آورید.
 
 
 درجه همگن =3                            
(2
 
             درجه همگنی=0
هر معادلة دیفرانسیل به فرم   را که در آن   هر دو از درجة n باشند یک معادلة دیفرانسیل همگن از درجة n می نامیم.
نکته : برای حل معادلات دیفرانسیل همگن از تغییر متغیرهای زیر استفاده می کنیم.
متغیرهای روبرو معادلة دیفرانسیل همگن را به گونه ای تغییر می دهند که به کمک استفاده از روش متغیرهای از هم جدا قابل حل باشد.

نظري براي اين محصول ثبت نشده است.


نوشتن نظر خودتان

براي نوشتن نظر وارد شويد.

محصولات
نظر سنجي
نظرتون در مورد ویکی پروژه چیه؟
  •   مراحل ثبت نام خیلی زیاده!
  •   مطلب درخواستیم رو نداشت!
  •   ایمیل نداشتم که ثبت نام کنم!
  •   مطلبی که میخواستم گرون بود!
نظرنتيجه