حل كامپيوتری (عددی) رفتار هيسترزيس ستون های I شكل و ستون های بست دار

حل كامپيوتری (عددی) رفتار  هيسترزيس ستون های I شكل و ستون های بست دار
حل كامپيوتری (عددی) رفتار  هيسترزيس ستون های I شكل و ستون های بست دار
110,000 ریال 
تخفیف 15 تا 30 درصدی برای همکاران، کافی نت ها و مشتریان ویژه _____________________________  
وضعيت موجودي: موجود است
تعداد:  
افزودن به ليست مقايسه | افزودن به محصولات مورد علاقه

_ به علت زیاد بودن حجم فایل برای دریافت موضوع مورد نظر لطفا مبلغ را از طریق منوی "آسان پرداخت" پرداخت کرده و با یکی از شماره های پشتیبانی تماس بگیرید تا بلافاصله ارسال شود.

فهرست مطالب

فصل اول
خلاصه
مقدمه
رفتار خميري ( پلاستيك)
1-1- مقدمه     
1-2- آزمايشهاي مبنائي
1-2-1- آزمايش كشش
1-2-2- نمودار تنش حقيقي- كرنش حقيقي
1-2-4- اثرات نرخ كرنش و دما
1-2-5- اثر فشار هيدرواستاتيك عدم قابليت تراكم
1-2-6- فرضي نمودن نمودارهاي تنش و كرنش مدلهاي
 ديناميكي و سينماتيكي
1-2-7- معادلات فرضي براي منحني‌هاي تنش و كرنش
1-3- معيار براي تسليم
1-3-1-مقدمه
 1-3-2- مثالهائي از معيارهاي تسليم.
1-3-3- سطح تسليم - فضاي تنش‌ها يك وسترگارد
1-3-4- پارامتر تنش لود – اثبات عملي معيارهاي تسليم
1-3-5- سطوح تسليم ثانوي- بارگزاري و باربرداري
فصل دوم
خلاصه ای از نرم افزار ABAQUS
2-2- آشنایی با نرم افزار ABAQUS
2-2-1-مقدمه:
2-2-3- Abaqus/ CAE
2-2-4- ايجاد يك مدل آناليز ساده
2-2-5- بررسي انواع مسائل غير خطي در نرم افزار ABAQUS
2-2-6- تحليل غيرخطي در ABAQUS
فصل سوم
رفتار هیسترزیس ستونهایI  شكل
3-1-اصول فلسفه طراحي لرزاه اي
3-1-1- مقدمه:
3-1-2- تحقيقات قبلي بر روي تير ستونهاي فولادي
3-1-3- مشخصه هائي که بر شكل پذيري تير ستون موثرند
3-2- طراحي ستونهاي نمونه:
3-2-1-توصيفات عمومي
ا3-2-2- شکل پذيري مورد نياز در ستونها
3-2-3- مقادير  که توسط گروه تحقيقاتي NZNSEE پيشنهاد ميگردد
3-2-4- محدوديت لاغري بال و جان که بوسيله NZNSEE پيشنهاد ميگردد.
3-2-5- محدوديت لاغري بال و جان که توسط LRFD،AISC پيشنهاد ميگردد.
3-2-6- جزئيات مقاطع ستونها
3-3- فرآیند آزمایش
3-3-1 نيرو و تغيير مکان
3-3-2- آزمايش ستونها
3-4- مشاهدات آزمايشگاهي و نتايج تجربي
3-4-1-مقدمه
3-4-2- مشاهدات پژوهش
3-4-3- عملکرد ستون نمونه اول
3-4-4-عملکرد ستون دوم
3-4-5- عملکرد ستون شماره سوم
3-4-6- عملکرد ستون شماره چهارم
3-4-7- عملکرد ستون شماره پنجم
3-4-8- عملکرد ستون ششم
3-4-9- عملکرد ستون هفتم
3-5- بحث در مورد نتايج آزمايشگاهي
3-5-1- جنبه هاي مباحثه در مورد نمونه هاي آزمايشگاهي و نتايج آنها
فصل چهارم
رفتارهیسترزیس ستون بست دار
4-1 تیرستونهای مشبک تحت بارهای متناوب
4-1-1 مقدمه
 4-1-2 نمونه های آزمایش
4-1-3 عضو مشبک بست دار مرسوم
 4-1-4 ستونهاي مشبك با مقطع هاي دوبل ناوداني اصلاح شده
 4-1-6 ستاپ آزمایش و تاریخچه بارگذاری
4-1-7 تاریخچه بارگذاری به صورت تعییرمکان
 4-2 رفتار کلی نمونه ها
4-2-1 نمونه DC1C
4-2-2 نمونه DC1M
 4-2-3 نمونه DC2M
4-2-4 نمونه DC1MB
4-2-5 نمونه DC2MB
4-3 نتایج آزمایش
4-3-1 پاسخ نیروی جانبی – تغییر مکان جانبی
4-4- مقايسه رفتار هيسترزيس نمونه ستون I شكل سوم با ستون بست دار معادل آن   
فصل پنجم
نتيجه گيري

فصل اول

رفتار خميري ( پلاستيك)

خلاصه

هفت نمونه ستون I شكل و سه نمونه ستون مشبك با بست موازي در آزمايشگاه تحت بارهاي فشاري و تغيير مكان جانبي قرار گرفته كه نتايج بصورت عكس و دياگرام نيرو - تغيير مكان  (منحني هاي هيسترزيس) موجود است. سپس با علم به نتايج آزمايشگاهي هفت ستون I شكل با همانند سازي شرايط آزمايش اعم از تكيه‌گاهها، نوع مواد و بارگذاري و اتصال اجزاء تشكيل دهنده آنها با كمك از نرم افزار المان محدود ABAQUS نتايج مطلوبي بدست آمد و نتايج آن نيز بصورت دياگرام نيرو تغيير مكان (منحني‌هاي هيسترزيس) قابل مقايسه با نتايج آزمايشگاهي به تصوير كشيده شده است .
همچنين همانند سازي بين نمونة شماره سه از ستونهاي I شكل كه ايجاد مفصل پلاستيك كامل در انتهاي تست از آن مشاهده گرديد ومقطع معادل ستون بست دار آن كه از لحاظ سطح مقطع ، ممان اينرسي تاريخچة بارگذاري و شرايط نگهداري در هر دو جهت بامقطع ناوداني كاملاً همسان است انجام شد به نظر مي رسد مقطع با ستون بست دار هم از لحاظ باربرري و شكل پذيري از مقطع I شكل معادل ضعيف تر است.
رفتار هيسترزيس نسبت به لاغري جان از لاغري بال حساس تر بوده و افزايش ضخامت جان رفتار هيسترزيس بهتري به ما ارائه مي دهد.

 پیشگفتار

نظر به اينكه اقتصادي بودن هر پروژه، ركن اساسي طرح بوده لذا مهندسين محاسب و طراح در محاسبات سازه‌ها و دستگاه‌هاي مكانيكي به بحث و تحليل مسائل در حالت خميري (پلاستيك) مي‌پردازند و همچنين در سازه‌ها با توجه به بارهاي رفت و برگشتي زلزله سازه ها بايد بتوانند انرژي زيادي هدر دهند (جذب كنند) يا به عبارت ديگر بايد سازه ها شكل پذير باشند تا در اثر بارگذاري ديناميكي ، سازه گسيخته نشود. به نظر مي رسد كه اين دو مهم بدون استفاده از كامپيوتر تقريباً غيرممكن است با توجه به نوع ساختار وسايل مكانيكي مي توان پس از ساخت آنها را تحت تست آزمايشگاهي قرار داد ولي در مورد سازه ها اين مطلب كاملاً صادق نيست لذا نرم‌افزارهاي معتبر مي توانند پيش بيني قابل قبولي به ما بدهند هدف اين پروژه تطبيق نتايج آزمايشگاهي با نتايج نرم افزار به روش المان هاي محدود و مقايسه رفتار هيسترزيس ستونهاي با مقطع I شكل و ستونهاي بست دار معادل است. اينگونه به نظر مي رسد كه ساخت اجراي ستونهاي بست دار نسبت به ستون با مقطع I شكل اقتصادي است . ولي با توجه به مقايسة ميزان جذب انرژي ستون‌هاي I شكل و بست دار كه از مطالعة رفتار هيسترزيس اين دو نوع ستون فولادي به دست مي‌آيد مي توان از زاوية ديگري بر اقتصادي بودن مقاطع بست دار هنگام زلزله نگاه كرد.


1-1- مقدمه
علم مربوط به مطالعه و بحث و تحقيق درباره خاصيت خميري اجسام (پلاستيسيته) را مي‌توان بدو قسمت متمايز از يكديگر بترتيب زير تقسيم كرد:
1-    حالتي كه كرنشهاي خميري در حدود يا نزديك كرنشهاي ارتجاعي ميباشد و بهمين علت ميگويند كه جسم در حالت ارتجاعي خميري يا الاستوپلاستيك قرار دارد.
2-    حالتي كرنشهاي خميري با مقايسه كرنشهاي ارتجاعي خيلي بزرگ بوده و در نتيجه ميتوان از گرنشهاي ارتجاعي در مقابل كرنشهاي خميري صرفنظر كرد.
حالت اول بيشتر براي مهندسين محاسب و طراح در انجام محاسبات ساختمانهاي فلزي و سازه‌ها، موشكها، ماشنيها، دستگاههاي مكانيكي و نظاير آنها بكار ميرود و بحث و تجزيه و تحليل مسائل مربوط بحالت ارتجاعي خميري بدون استفاده از كامپيوتر امكان‌پذير نيست و از سالهاي 1960 ببعد شروع به حل اين مسائل با استفاده از كامپيوتر گرديد.
حالت دوم بطور كلي براي مهندسين توليد جهت طرح ماشينها و دستگاههاي نورد، كشيدن سيمها و حديده‌كاري، چكش‌كاري، تزريق فلزات، فرم دادن قطعات و ايجاد تغيير شكل دائمي در آنها قابل استفاده است.
تاريخ علم حالت خميري از سال 1864 كه ترسكا  (TRESCA)  نتایج کارهای خودش را درباره سنبه زنی و حديده كاري و تزريق منتشر كرد شروع مي‌شود. او در اين موقع با آزمايشهائي كه انجام داد مبناي تسليم را بوسيلة فرمول نشان داد. چند سال بعد با استفاده از نتايج ترسكا، سنت و نانت (SAINT-VENANT) ولوي (LEVY)پايه‌هاي تئوري جديد حالت خميري را بيان كردند. براي 75 سال بعدي پيشرفت خيلي كند و ناهموار بود، گر چه كمك مهمي توسط فن ميسز و هنکي (HENCKY) ، پراند تل (PRANDTL )و سايرين شد، تقريباً فقط از سال 1945 بود كه نظرية يك شكلي پديدار گشت. از آن موقع كوششهاي متمركزي بوسيله بسياري از پژوهندگان انجام گرفت كه با سرعت زيادي به پيش ميرود. خلاصة تاريخچة پژوهشگران بوسيلة هيل (HILL) و وسترگارد (WESTERGAARD) بنحو شايسته‌اي بيان شده است.
نظريه‌هاي خميري به دو دسته تقسيم ميشوند: نظريه‌هاي فيزيكي و نظريه‌هاي رياضي. نظريه‌هاي فيزيكي در پي آنستكه علت جاري شدن خميري فلزات را در يابد. وقتيكه مصالح از نقطة نظر ميكروسكپي ديده شود، كوشش اين است كه معلوم گردد برسراتمها- كريستالها و دانه‌هاي مصالحي كه در حالت جريان خميري مي‌باشد چه مي‌آيد. نظريه‌هاي رياضي از طرف ديگردر طبيعت بصورت حادثة منطقي به موضوع توجه كرده سعي ميكند كه آنرا فرمول بندي نموده و در حالت بزرگ و مرئي بشكل قابل استفاده در آورد بدون اينكه بطور عميق به مبناهاي فيزيكي توجه داشته باشد. اميد احتمالي البته اين است كه بالاخره‌ ايندو  نظريه يكي شده و حالت و وضع مصالح را در حالت خميري تعيين نموده و مبنائي براي استفاده هر عملي به مهندسين بدهد. در اين بخش  بيشتر روي فرضيه‌هاي رياضي اقدام شده است طوريكه اين فرضيه‌ها از نوع فيزيكي كاملاً متمايز است. فرضيه‌هاي فيزيكي توسط فيزيكدانها مخصوص فيزيكدانهاي حالت جامد مورد بحث و مطالعه واقع مي‌شود.
بحث دربارة حالت جريان خميري در فلزات بصورت زير از طريق درك مستقيم انجام مي‌شود: هرگاه نواري از فولاد در نظر گرفته شود كه يك طرف آن درگيره‌اي ثابت شده و بطرف ديگرش نيروي خمشي وارد آيد، طرف آزاد خم ميگردد. اگر مقدار نيروي وارده زياد نباشد وقتي نيرو برداشته شود انتهاي آزاد نوار بحالت اوليه برگشت خواهد يافت طوريكه هيچگونه تغيير شكل محسوس در نوار باقي نمي‌ماند. هرگاه نيروي وارد به انتهاي آزاد بزرگ باشد پس از برداشت نيرو ديگر جسم بحالت اول بر نمي‌گردد ومقداري از تغيير شكل در آن بطور دائم خواهد ماند و گفته مي‌شود كه تغيير شكل خميري در جسم ايجاد گرديده است. منظور ما اين نيست كه معلوم كنيم چرا تغيير شكل خميري در جسم توليد شده است بلكه مي‌خواهيم تعيين كنيم كه از نظر عوامل وارد بجسم مانند تنشها- كرنشها- و بارها چه پديده‌هائي در جسم بوجود آمده است.
بطور خلاصه، حالت خميري عبارتست از خاصيت اجسام سخت وقتي كه تحت اثر بارهاي خارجي تغيير شكل دائمي در آنها ايجاد شود، حالت ارتجاعي يا الاستيسيته عبارتست از خاصيت جسم سخت كه تغيير شكل حاصله در آنها با برداشتن بار از بين رفته و بشكل اول برگشت پيدا كند. در حقيقت تعريف اجسام ارتجاعي كاملاً تصوري مي‌باشد زيرا اجسام طبيعي پس از برداشت نيروهاي وارده كم و پيش مقداري از تغيير شكل را در خود نگه‌ميدارد و لو ميزان نيروي موثر آنها كم باشد.
براي چنين اجسام ارتجاعي مقدار تغيير شكل توليد شده بقدري كم است كه در اثر بارهاي كوچك قابل اندازه‌گيري نيست. بنابراين نظرية پلاستيسيته در حالاتي بكار برده مي‌شود كه بارهاي وارد جسم بمقداري باشد كه تغيير شكلهاي دائمي حاصله در جسم قابل‌ اندازه‌گيري باشد.
 نظرية حالت خميري اجسام را ميتوان به دو قسمت تقسيم كرد. در يك قسمت عمليات تغيير فرم دادن فلزات مانند چكش‌كاري- حديده‌كاري- تزريق- نورد‌كاري و غيره بررسي مي‌شود كه در آنها تغيير شكلهاي خميري (پلاستيكي) به مقدار زياد مشاهده مي‌شود.براي اين نوع مسائل مي‌توان از كرنشهاي ارتجاعي صرف‌نظر كرد و فلز را مي‌توان خميري كامل فرض نمود. در قسمت ديگر دسته‌اي از مسائل قرار مي‌گيرد كه مقدار كرنشهاي خميري در مقابل كرنشهاي ارتجاعي كوچك است اين قسمت يا نوع دوم از كرنشها براي طراحان ماشينها و محاسبان سازه‌ها در درجه اول اهميت است. با توجه فراواني كه اخيراً روي تقليل وزن هواپيما- موشكها- كشتي‌هاي فضائي و نظاير آنها بكار ميرود ديگر طراحان اين دستگاهها نمي‌توانند ضرائب اطمينان را در سطح بالا در نظر بگيرند و ميبايد كه حداكثر نسبت بار به وزن را در محاسبات بدست آورند. اين نوع محاسبه مطمئناً در ناحية پلاستيك انجام خواهد شد. حتي در موارد استعمال سادة صنعتي رقابت شديدي روي كاربرد مصالح و بازده بالاتر وجود دارد.
1-2- آزمايشهاي مبنائي
در اين بخش نتايج بعضي آزمايشهاي مبنا روي فلزات نشان داده شده است منحني تنش- كرنش در مورد كشش كه اساس تئوري پلاستيسيته مي‌باشد بطور تفصيل آمده است. اثر بارگزاري معكوس- نرخ كرنش، دما و فشار هيدرواستاتيك بطور خلاصه بحث شده است. منحني‌هاي تصويري تنش- كرنش و نمونه‌هاي متعدي از مصالح و عمل آنها در آزمايشها شرح داده شده است.
1-2-1- آزمايش كشش
ساده ترين و عمومي ترين آزمايشها كه مهمترين آنها نيز مي‌باشد، آزمايش كشش ساده است. يك نمونة استوانه‌اي شكل كه در شكل 1-1 نشان داده شده است در داخل ماشين قرار داده مي‌شود، بار بتدريج اضافه مي‌شود، تغييرات ميزان بار وارده در مقابل تغيير طول علامت گزارش شده روي نمونه و كم شدن قطر آن يادداشت مي‌شود. نوع عمومي نمودار تنش در مقابل كرنش در شكل 2-1 نشان داده شده است.
تنش اسمي كه عبارت از بار وارده بر سطح مقطع اولية نمونه است در مقابل كرنش قراردادي كه همان كرنش مهندسي ناميده مي‌شود رسم شده است. كرنش مهندسي (قراردادي) عبارتست از مقدار اضافه طول تقسيم بر طول اوليه علامت گزاري شده در روي نمونه تنش اسمي را ميتوان بوسيلة رابطة زير نشان داد.
(1-1)                                                                                             
و كرنش مهندسي (قراردادي) توسط رابطة زير نشان داده مي‌شود:
(2-1)                                                                                            
در شروع ملاحظه مي‌شود كه رابطة بين تنش و كرنش خطي است. اين قسمت خطي تا نقطة A ادامه مي‌يابد كه به حد تناسب معروف است. در اين ناحيه است كه تئوري خطي ارتجاعي با استفاده قانون هوك معتبر است.

منابع
فهرست منابع فارسي
1- مجتبي ازهري، سيد رسول ميرقادري، ارديبهشت 1384، طراحي سازه هاي فولادي .
2- شاپور طاحوني، چاپ هشتم، طراحي سازه هاي فولادي
3- شعبانعلي پوردار، تير 1380 مقاومت مصالح پيشرفته.
4- كلاوس يورگن باته.، 1385 ، روش هاي عناصر محدود ترجمه  كريم عابدي.
5- الكساندر مندلسون، 1357، پلاستيسه يا حالت خميري اجسام، ترجمه نورالدين شهابي

فهرست منابع لاتين
1 Mitani , J., Makino , M. and Matsui, C., “Empirical Formula for Plastic Rotation capacity of steel Beam-Columns with H-Shaped Cross Section”, Proc. Pacific Structural Steel Conference, Vol. 2, pp.283-382, Auckland, 1986.
2  Popov, E.P., Bertero, V.V. and Chandramoulli , S., “Hysteretic Behaviour of Steel Columns” , Report No. UCB/EERC 75-11, Earthquake Engineering Research Centre , College of Eng., Univ. of California, Berkeley, Cal. (1975).
3  Popov, E.D. and Pinkney, R.B., “Reliability of Steel Beam-to-Column Connections Under Cyclic Loading” , Proc. 4th WCEE, 1969, Santiago , Chile, B-3 , pp.15-30.
4   Lukey, A.F. and Adams, P.F., “Rotation Capacity of Beam Under Moment Gradient” , Proc. ASCE, Vol. 95, No. ST6, June 1969, pp.1173-1188.
5  Climenhaga , J.J. and Johnson, R.P., “Moment-Rotation Curves for Locally Buckling Beams, Proc. ASCE, Vol. 98, No. ST6, June 1972, pp.1239-1254.
6  Vann, W.P., Thompson , L.E., Whally, L.E. and Ozier , L.D., “Cyclic Behaviour of Rolled Steel Members” , Proc. 5th WCEE , Vol. 1, Rome, 1973.
7   Mitani, I., Makino , M. and Matsui , C., “Influence of Local Buckling on Cyclic Behaviour of Steel Beam-Columns”, Proc. 6th World Conf. on Earthquake Eng., New Delhi , India , Vol.3, 1977, pp.3175-3780.
8  Butterworth , J.W. and Spring, K.C.F., “Column Design” , Section D-NZNSEE Study Group for the Seismic Design of Steel Structures; Bull NZNSEE, Vol. 18, No. 4, December 1985, pp.344-350.
9  MacRae , G.A., Walpole , W.R. and Carr, A.J., “Inelastic I-Shaped Beam-Columns in Earthquake-Resistant Structures”, Proc. Pacific Structural Steel Conference , Brisbane, May 1989.
10  Specification for Structural Steel Buildings-Load and Resistance Factor Design, American Institute of Steel Construction, September 1,1986.
11 MacRae, G.A. and Carr, A.J. , “Capacity Design of Steel Moment Resisting Frames” , Proc. Pacific Conference on Earthquake Engineering , New Zealand, 5-8 August 1987, pp.47-69.
12  Clifton, G.C., 1987. “Seismic Design procedures for Ductile Structural Steel Moment Resisting and Eccentrically Braced Frames”, Proc. Pacific Conference on Earthquake Engineering, Wairakei , New Zealand, Vol. 2, p.25.
13  Lay, M.G., “Flange Local Buckling in Wide-Flange Shapes”. Journal of the Structural Division, ASCE, ST6, Dec. 1965, pp.95-116.
14  Bertero, V.V. and Popov, E.P. , “Effects of Large Alternating Strains on Steel  Beams” , Journal of the Structural Division, ASCE, Vol. 91, ST1, Feb. 1965.
15  Carpenter, L.D. and Lu, L.W., “Behaviour of Steel Frames Subjected to Repeated and Reversed Loads” , International Association for Bridge and Structural Engineering. Eighth Congress , New York, Sept. 9-14, 1968, pp.647-656.
16 Lu, L.W., “Inelastic Buckling of Steel Frames” , Journal of the Structural Division , ASCE, St6, Dec. 1965.
17  Yamada , M., “Effect of  Cyclic Load on Buildings”, State of Art Report No. 1, Technical Committee 18, International Conference on planning and Design of Tall Buildings , Lehigh University, Bethlehem, p. (1972).
18 Bleich F. “Buckling Strengh of Metal Structures.”. Second Edition, McGraw-Hill Book Company , New York, 1952.
19 Timoshenko Sp, Gere JM. “Theory of Elastic Stabiliyty”. Second Edition, McGraw-Hill Book Company , New York, 1961.
20 Duan L, Reno M, Uang C. “Effect of Compound Buckling on Compression Strength of Built-up Members. “Engineering Journal 2002; 39(1): 30-37.
21 Diptiranjan SAHOO and Durgesh C.RAI, BATTENED BUILT-UP BEAM-COLUMNS UNDER CYCLIC LOADS, 13thWorld Conference on Earthquake Engineering Vancouver , B.C. , Canada,  August 1-6 , 2004, Paper No.67
22 ATC. “Guidelines for Cyclic Seismic Testing of Components of Steel Structures.” Applied Technology Council, Redwood city, CA, USA, 1992.
23 Chen WF, Sohal I. “Plastic Design and Second Order Analysis of Steel Frames.” Springer and Verlag, New York Inc. 1995.
24 Rai DC. “Slow Cyclic Testing for Evaluation of Seismic Performance of Structural Components.” ISET journal of Earthquake Technology 1995; 38(1):31-55.
25 Bazant ZP, Cedolin L. “Stability of Structures.” Oxford University Press, New Yourk, NY, 1991.
26 Englekrik R. “Steel Structures Controlling Behavior Through Design.” John Wiley & Sons, New York, NY, 1994.
27 Galambos TV. “Guide to Stability Design Criteria for Metal Structures.” , Fourth Edition, Wiley-Interscience, New York, NY, 1988.
28 Salmon CG, Johnston JE. “Steel Structures Design and behaviour.” Third Ed., Harper Collins Publishers Inc., 1990.
29 Trahair NS, Bradford MA. “The Behaviour and Design of Steel Struchtures.” Second Edition, Chapman and Hall, New York, NY, 1988.


ABSTRACT
Seven I- shaped steel columns were previously tested under cyclic loading with constant compressive load ratio (p / py) equal to 0.3. the hysteretic behavior of the I – shaped steel column were obtained using the experimental results; namely , lateral load vs lateral displacement curves .
The main objective of the present work is to obtain the hysteretic curves using numerical methods.   
Using ABAQUS finite element package, the above mentioned column were numerically analyzed and the hysteretic curves were again obtained. The numerical results followed well the experimental results.
One move battened column equivalent  to one I-shaped steel column (specimen three) were numerically analyzed. The hysteretic curves was obtained for the battened column using ABAQUS finite element package. It was concluded that the ductility of the battened column was dramatically reduced compared with the I – shaped columns.

نظري براي اين محصول ثبت نشده است.


نوشتن نظر خودتان

براي نوشتن نظر وارد شويد.

محصولات
نظر سنجي
نظرتون در مورد ویکی پروژه چیه؟
  •   مراحل ثبت نام خیلی زیاده!
  •   مطلب درخواستیم رو نداشت!
  •   ایمیل نداشتم که ثبت نام کنم!
  •   مطلبی که میخواستم گرون بود!
نظرنتيجه